(1pt) 1. Consider the following three vector potentials in Cartesian coordinates:

$$\bullet \ \mathbf{A}_1 = \mu_0 K z \, \hat{x}$$

$$\bullet \mathbf{A}_2 = \mu_0 K z \left(\hat{x} + \hat{y} \right)$$

$$\bullet \mathbf{A}_3 = \mu_0 K \left(2z \, \hat{x} + x \, \hat{z} \right)$$

Which two vector potentials result in the same magnetic field?

(a)
$$\mathbf{A}_1$$
 and \mathbf{A}_2 (b) \mathbf{A}_1 and \mathbf{A}_3

(d) They all result in different magnetic fields.

$$\begin{array}{ccc}
\vdots & \overrightarrow{B}_1 = \mu_0 & k & \widehat{y} & & \\
\overrightarrow{B}_2 & = \mu_0 & k & (\widehat{y} - \widehat{x}) & & & \\
\overrightarrow{B}_3 & = \mu_0 & k & (2\widehat{y} - \widehat{y}) & & & \\
\end{array}$$

$$\begin{array}{cccc}
Sume, & & & \\
\overrightarrow{B}_3 & = \mu_0 & k & (2\widehat{y} - \widehat{y}) & & & \\
\end{array}$$

$$= \hat{x} \left(\frac{\partial A_2}{\partial y} - \frac{\partial A_3}{\partial z} \right) - \hat{y} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_2}{\partial z} \right) + \hat{z} \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_3}{\partial y} \right)$$

= | x y z | \frac{\partial}{\partial} \fra

(1^{pt})2. Consider the following two vector potentials in Cartesian coordinates:

$$\bullet \ \mathbf{A}_1 = \mu_0 Kz \left(\hat{x} + \hat{y} \right)$$

$$\bullet \mathbf{A}_2 = \mu_0 K y \left(\hat{x} + \hat{y} \right)$$

Which one of the above vector potentials satisfies $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$?

(a) only
$$\mathbf{A}_1$$

(b) only \mathbf{A}_2

(c) both
$$\mathbf{A}_1$$
 and \mathbf{A}_2

(c) both
$$\mathbf{A}_1$$
 and \mathbf{A}_2 (d) neither \mathbf{A}_1 nor \mathbf{A}_2

Know
$$\vec{B} = \vec{\nabla} \times \vec{A} + \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \mu_0 \vec{J}$$

$$\vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{V}^2 \vec{A} = \mu_0 \vec{J}$$
If $\vec{\nabla} \cdot \vec{A} = 0$ (Coulomb gauge),
thun $\vec{\nabla}^2 \vec{A} = -\mu_0 \vec{J}$

i require
$$\nabla \cdot \vec{A} = 0$$
 then $\nabla^2 \vec{A} = -\mu_0 \vec{J}$

$$\vec{\nabla} \cdot \vec{A}_1 = \frac{\partial}{\partial x} (\mu_0 K_z) + \frac{\partial}{\partial y} (\mu_0 K_z) = 0$$

$$\vec{\nabla} \cdot \vec{A}_2 = \frac{\partial}{\partial x} (\mu_0 K_y) + \frac{\partial}{\partial y} (\mu_0 K_y) = \mu_0 K \neq 0$$

VECTOR DERIVATIVES

Cartesian. $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}; \quad d\tau = dx \, dy \, dz$

Gradient:
$$\nabla t = \frac{\partial t}{\partial x} \, \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \, \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \, \hat{\mathbf{z}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Curl:
$$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{\mathbf{z}}$$

Laplacian:
$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$

Spherical. $d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \, d\theta \,\hat{\boldsymbol{\theta}} + r \sin\theta \, d\phi \,\hat{\boldsymbol{\phi}}; \quad d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi$

Gradient:
$$\nabla t = \frac{\partial t}{\partial r} \, \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \, \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \, \hat{\boldsymbol{\phi}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

Curl:
$$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}}$$
$$+ \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_{r}}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$

Laplacian:
$$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \theta^2}$$

Cylindrical. $d\mathbf{l} = ds \,\hat{\mathbf{s}} + s \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}; \quad d\tau = s \,ds \,d\phi \,dz$

Gradient:
$$\nabla t = \frac{\partial t}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

Curl:
$$\nabla \times \mathbf{v} = \left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (s v_\phi) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$$

Laplacian:
$$\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$

Triple Products

(1)
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

(2)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Product Rules

(3)
$$\nabla (fg) = f(\nabla g) + g(\nabla f)$$

(4)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

(5)
$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

(6)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(7)
$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

(8)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

Second Derivatives

$$(9) \quad \nabla \cdot (\nabla \times \mathbf{A}) = 0$$

$$(10) \quad \nabla \times (\nabla f) = 0$$

(11)
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

FUNDAMENTAL THEOREMS

Gradient Theorem: $\int_{a}^{b} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$

Divergence Theorem: $\int (\nabla \cdot \mathbf{A}) d\tau = \oint \mathbf{A} \cdot d\mathbf{a}$

Curl Theorem: $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$

BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell's Equations

In general:

$$\begin{cases} \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases} \qquad \begin{cases} \nabla \cdot \mathbf{D} = \rho_f \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t} \end{cases}$$

In matter:

$$\begin{cases} \nabla \cdot \mathbf{\dot{p}} = \rho_f \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$
$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{I}}{\partial t}$$

Auxiliary Fields

Definitions:

Linear media:

$$\begin{cases}
\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \\
\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}
\end{cases}$$

$$\begin{cases}
\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}, & \mathbf{D} = \epsilon \mathbf{E} \\
\mathbf{M} = \chi_m \mathbf{H}, & \mathbf{H} = \frac{1}{\mu} \mathbf{B}
\end{cases}$$

Potentials

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \qquad \mathbf{B} = \nabla \times \mathbf{A}$$

Lorentz force law

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Energy, Momentum, and Power

$$U = \frac{1}{2} \int \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$$

Momentum:

$$\mathbf{P} = \epsilon_0 \int (\mathbf{E} \times \mathbf{B}) \, d\tau$$

Poynting vector:
$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

Larmor formula: $P = \frac{\mu_0}{6\pi c}q^2a^2$

$$=\frac{\mu_0}{6\pi c}q^2a$$

FUNDAMENTAL CONSTANTS

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$$

(permittivity of free space)

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$$

(permeability of free space)

$$c = 3.00 \times 10^8 \,\mathrm{m/s}$$

(speed of light)

$$e_{-} = 1.60 \times 10^{-19} \,\mathrm{C}$$

(charge of the electron)

$$m = 9.11 \times 10^{-31} \,\mathrm{kg}$$

(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \end{cases}$$

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases} \begin{cases} \hat{\mathbf{x}} = \sin \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat{\boldsymbol{\theta}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\boldsymbol{\theta}} + \cos \phi \, \hat{\boldsymbol{\phi}} \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1}\left(\sqrt{x^2 + y^2}/z\right) \\ \phi = \tan^{-1}(y/x) \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\sqrt{x^2 + y^2} / z \right) \\ \phi = \tan^{-1} (y/x) \end{cases} \begin{cases} \hat{\mathbf{r}} = \sin \theta \cos \phi \, \hat{\mathbf{x}} + \sin \theta \sin \phi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} = \cos \theta \cos \phi \, \hat{\mathbf{x}} + \cos \theta \sin \phi \, \hat{\mathbf{y}} - \sin \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \end{cases}$$

Cylindrical

$$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases}$$

$$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases} \begin{cases} \hat{\mathbf{x}} = \cos \phi \, \hat{\mathbf{s}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$

$$\begin{cases} s = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{cases}$$

$$\begin{cases} s = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{cases} \begin{cases} \hat{\mathbf{s}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}} \\ \hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$